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EDGE BUCKLING OF A LAMINATED MEDIUMt

M. A. BlOT

New York, N.Y.

Abstract-It is shown that in a laminated medium subject to a compressive stress an instability occurs which is
localized near an edge cut perpendicularly to the layers. General equations are derived for the rheological stability
of laminated media and applied to the particular case of "edge buckling". The theory includes the effect of
"interstitial flow." As a consequence of the author's principle of correspondence, the results are valid for elastic,
viscous and viscoelastic materials. The influence of friction at the edge is taken into account. The analysis may be
considered as an extension of the theory of initially stressed anisotropic media to include couple stresses and
stress-gradient dependence of the strain.

1. INTRODUCTION

CONSIDER a laminated medium composed of thin layers of two types of materials alternately
hard and soft. We shall first assume the material to be elastic. The results are then readily
extended to viscous and viscoelastic materials by viscoelastic correspondence.

The laminated medium is confined between rigid frictionless boundaries A Band C D
and extends to infinity to the left as shown in Fig. 1. The laminations are parallel to the
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FIG. I. Typical configuration showing edge buckling ofa laminated medium under a compressive stress P.

boundaries A Band C D and an initial compressive stress P acts along the same direction.
The medium is terminated at the edge B D which is cut perpendicularly to the laminations.
The initial compressive stress P may be applied by a rigid piston acting at this edge. It is
assumed that there are no couple stresses at this edge with other boundary condition to be
specified regarding the influence of friction.

The xy plane is the plane of the figure with the x axis along the center line of the
laminated medium and oriented outward to the right. For simplicity we shall consider an
incompressible medium and two-dimensional deformations in the xy plane.

The problem of internal buckling of such a medium was previously analyzed [1] for
the case where the medium extends from x = - 00 to x = + 00.

By contrast, as shown in the following analysis, the presence of the edge B D gives rise
to a buckling which is localized near this edge as illustrated in Fig. 1. The general equations

t This work was supported by the A.F. Office of Scientific Research of the Office of Aerospace Research
under Contract No. AF 49(638)-1329.
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derived previously [1] for the treatment of internal buckling are also applicable to this
case. The derivation of these equations is outlined in the following section.

A hydrostatic initial stress may of course be added to the compressive stress without
modifying in any way the analysis and the results. This amounts to assuming the presence
of two principal initial stress components with P representing their difference [2, 3].

It should be pointed out that a similar effect of edge buckling occurs in the well known
problem of a beam resting on an elastic foundation [4]. The present treatment is however
much more general and considers the effect of new factors such as a shear rigidity, inter
stitial flow and edge friction. In particular the introduction of interstitial flow leads to a
differential equation of the sixth order as compared to an equation of the fourth order for
a beam on elastic foundation.

2. GENERAL STABILITY EQUATIONS

The laminated medium is represented by an equivalent anisotropic continuum with
couple stresses and strain components depending on the second gradient of the stress.
This equivalent continuum is derived as follows.

The stiff layers of thickness hi and elastic modulus /11 alternate with soft layers of
thickness h2 and elastic modulus /12'

Consider a hard layer sandwiched between two half layers of soft material. This may be
considered as a composite plate and the medium is constituted by a stacking of such plates
with perfect adherence (Fig. 2).
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FIG. 2. Composite plate made of a hard layer between two soft layers.

Equations of equilibrium for bending of such a plate are

o..it
-+m=,Ai'ox
o,Ai' 02 V

oX +q = 2Ph ox2 .

(2.1)

In these equations v is the normal deflection of the centerline of the hard layer and
2h = hi +h2 is the total thickness ofa pair of layers. The bending moment ..it is assumed to
be due only to the bending of the hard layer. Hence

(2.2)
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The couple stress is vi(/2h and corresponds to a bending moment per unit area. The total
shear over the cross section is denoted by JV. The external moment applied per unit
length is

m = h(O'~y +0'Xy);;;; 2hO'xy

and the vertical force per unit length is

(2.3)

(2.4)

(2.5)

_' """ oO'yy
q - 0'yy - O'yy=2h oy .

The average tangential and normal stress in the approximately equivalent continuum are
denoted by O'xy and O'yy. The value of O'xy is given by

OV
ax)' = L ax

where L is the average shear modulus of the laminated medium along the layers. As
derived earlier [2, 3] its value is

where

1
L=-

a l a2-+
Pi P2

(2.6)

(2.7)

are the fractions of the total thickness occupied by each layer.
By introducing the values (2.2) (2.3) (2.4) and (2.5) into equations (2.1) they become

1 303V OV _
-3PlhlOX3+2hLox - AI"

oJV +2h 00'yy = 2Ph 02V •

ax oy ox2

Elimination of JV between these two equations yields

(2.8)

(2.9)~ h304V 2h(P_L)02V_2h°O'Yy = O.
3Pl

1 ox4+ ox2 oy

In order to complete the theory we need an additional relation between v and (J' )'y'

Consider a soft layer sandwiched between two half layers of hard material (Fig. 3). The
relative change of thickness of this composite plate represents the average local strain in
the y direction. It may be written approximately

(2.10)

where 0'yy is the normal stress, and

(2.11)
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FIG. 3. Soft layer between two hard layers showing interstitial flow u.

is an average elastic modulus of the laminated material as derived earlier [2, 3] under the
assumption that the microstrain is the same in the hard and soft materials. If the rigidity
contrast of the two materials is large a correction term e~y must be added. The strain (2.10)
is assumed to depend only on CTyy' This assumption is valid for the purpose of the present
theory dealing with deformations where the wavelength along x is much shorter than the
wavelength along y. This is further confirmed by applying more elaborate theories which
do not introduce this simplifying assumption [2, 3, 5].

The correction term e~y enters into play when the modulus /-l2 is much smaller than /-li'
In this case the soft medium may tend to flow relative to the hard layers with a parabolic
distribution of the displacement along x (Fig. 3). We have called this effect interstitial
flow [3, 5]. It is evaluated as follows.

With the x axis along the centerline of the soft layer the parabolic distribution of
displacement is

( 4/)u = 1- h~ f(x) (2.12)

where f(x) is an undetermined function. The equilibrium condition for the stresses in the
soft layer is

OCTyy OCTxy

ox +ay = O.

The average shear stress across the thickness in this layer is

ou
CTxy = /-l2 oy .

Combining (2.12) (2.13) and (2.14) yields

f(x) = h~ OCTyy •

8/-l2 ox

The change of thickness of the soft layer produces an additional strain

1Jh
2/

2 ou 1 h df
e~y = -2h a-dy = -3 h2~i'

-hz/2 x x

(2.13)

(2.14)

(2.15)

(2.16)

This change of thickness is expressed by means of the microstrain ou/ox as the integrand,
using the assumption of incompressibility. Elimination of f(x) between (2.15) and (2.16)



yields
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(2.17)

(2.18)

with this value the stress-strain relation (2.10) becomes

2h ov = ~u _ h~ 02Uyy •

oy 2M yy 12,u2 ox2

Equations (2.9) and (2.18) are the general equations for the two unknowns v and U yy •

3. INTERNAL BUCKLING

In order to obtain better physical insight we shall first recall the case of internal buckling
with couple stresses [1,5]. Consider the following solution of equations (2.9) and (2.18)

try x
v = C cos H exp 2iYh .

In these expressions C is an arbitrary amplitude and Y is a real root of

with

b = P-L

~=_1_
1+Ky2

16 3 M
K = -(X2-'

3 ,u2

(3.1)

(3.2)

(3.3)

This solution corresponds to a confined medium such that v = 0 at y = ± H/2, and
represents an internal buckling with a deformation which is a purely sinusoidal function
of x, of wavelength

(3.4)

Equation (3.2) yields the compressive stress P required to maintain a given wavelength.
Solving equation (3.2) for P we derive

(3.5)
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The minimum of this expression as a function of }' yields the critical buckling stress and
wavelength. The problem is considerably simplified if we introduce the assumption

£5 = 1. (3.6)

This amounts to putting e~y = 0 in equation (2.10) hence to neglecting the effect of inter
stitial flow. With this assumption the minimum value of (3.5) yields the buckling stress

P = L+2J(ac).
The corresponding value of y is

Hence from expression (3.4) the buckling wavelength is

(3.7)

(3.8)

(3.9)

This expression may be further simplified by noting that in practice the rigidity contrast
between layers is large so that we may write approximately M ~ (XlJll' With this approxima
tion expression (3.9) becomes

(3.10)

(3.11)

If we take into account interstitial flow the value of £5 becomes a function of y through
expression (3.3). Finding the minimum of the value (3.5) for P is somewhat more elaborate
and may be carried out numerically [1]. By introducing the same approximation M~ (XdJ. l

as above the buckling wavelength !l'i is represented graphically by plotting

Z = 1.90J(h l H)
!l'i

as a function of

(3.12)

An approximate expression for this plot is found to be

(3.13)

(3.14)

Hence

!l'i = l'90J(h tH)(1 +3'63Jlt(X~h)t.
J.l.2 H

The bracket represents the correction factor due to interstitial flow. It depends on the
i power of 1+ (1/2)K and is therefore very insensitive to the parameter K. In many cases
for which K is not large the influence of interstitial flow will be negligible and the simple
formula (3.10) will be valid for the buckling wavelength.

According to equation (3.7) the buckling stress P is of the order of L. Note that this
buckling may occur in the elastic range for a material with strong anisotropy where M
is large relative to L. This will be the case for example in a laminated medium composed of
an alternation of hard and soft layers.
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4. EDGE BUCKLING WITH PERFECT SLIP

We replace iy by A. in the solution (3.1). It becomes

M . ny x
CTyy = -4nc5 H C sm H exp 2A. h'

where

and
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(4.1)

(4.2)

(4.3)

This solution again represents a confined medium such that v = 0 at y = ±H/2. For the
case of edge buckling we must consider complex roots A. of equation (4.3) with positive
real parts. This corresponds to a deformation localized in the region x < 0 near the edge,
x = O. (Fig. 1).

As pointed out in the preceding section, the case of internal buckling is obtained by
evaluating the minimum value ofP as a function ofthe wavelength. The present case ofedge
buckling is derived in quite a different way by introducing boundary conditions at the
edge x = O.

In order to simplify the analysis it is convenient to consider the case where interstitial
flow is negligible. As shown above this amounts to putting c5 = 1. Equation (4.3) for A.
becomes

(4.4)

We choose two complex roots A. and A.* ofthis equation with positive real parts. Adding
two solutions of the form (4.1) given by these two roots the deflection representing edge
buckling is written

ny
v = vocos-

H

x x
vo = C exp 2A.

h
+C* exp 2A.*h

(4.5)

with complex conjugate constants C and C*. The deflection of the center line at y = 0
is given by vo(x).

Consider boundary conditions at the edge x = O. We shall assume that no couple stress
is applied at the edge. This implies

02 V
vi( = c5x2 = 0 (x = 0). (4.6)
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Another boundary condition involves the total shear . \. over the cross section of area
2h. If there is no friction at the edge the compressive stress P acts in a direction normal
to it and the value of .t' at the edge is

at'
. \. = 2hP;:;-

ux
(x = 0). (4.7)

With this value of .1'" the first equations (2.8) becomes

1 (i3 v ev
3J11hi(lx3+2h(P-L)cx = o. (4.8)

This is the second boundary condition. We substitute expression (4.5) into the two boundary
conditions (4.6) and (4.8), at x = 0 and obtain

CA2+C*A*2 = 0

a(CA3+C*A*3)+b(CA+C*A*) = O.

By taking into account the characteristic equation (4.4) these equations become

CA2+C*A*2
1 1

C-+C*- = O.
A A*

Elimination of C and C* and cancellation of the factor (A - A*) yields

A2+U*+A*2 = O.

(4.9)

(4.10)

(4.11)

This equation may be expressed by means of the coefficient a, b, c using the relations

AA* =j( ~).

With these values relation (4.11) becomes

b = J(a c).

(4.12)

(4.13)

By substituting expression (3.3) for b this last equation yields the critical compression for
edge buckling

P = L+J(a c).

As expected this value is smaller than the value (3.7) required for internal buckling.
The roots Aand A* are derived from

(4.14)

(4.15)

obtained by substituting b = .J(a c) in equation (4.3). The complex conjugate roots of
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(4.15) with positive real parts are

A = (~)~in/3

Jc* = (~)\-in/3.

Equations (4.10) and (4.16) require the constants to be of the form,
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(4.16)

(4.17)

(4.20)

(4.19)

(4.18)

(5.1)

By using equation (3.9) the roots (4.16) may be expressed by means of the wavelength "sp;
for internal buckling. We write -

Jc = nh ein/3

:l';

nh . /3Jc* = _e-·n

:l'i

With these results the deflection (4.5) of the center line becomes

Vo = -2C' exp(~) sin ( nJ3 ;/~).

The wavelength of edge buckling is therefore

2
:l'e = J3:l'; = 1·16:l';.

Hence it is slightly larger than for internal buckling. The amplitude damps out rapidly
with the distance from the edge as illustrated in Fig. 4(a).

y

-----_="L-+_ x (0)

FIG. 4. Deflection vo(x) of the centerline: (a) with perfect slip at the edge; (b) with imperfect slip at
the edge.

5. EDGE BUCKLING WITH IMPERFECT SLIP

We shall consider the case where perfect slip is prevented by an elastic restraining force
acting at the edge x = O. The boundary condition (4.7) is now replaced by

av
JV = 2hP ax -kv.

The additional term - kv represents an elastic force opposed to the deflection v, acting over
the thickness 2h of the composite plate at the edge. The other boundary condition (4.6)
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(5.2)

corresponding to the absence of couple stress at the edge remains the same. Proceeding
as before, using expression (2.8) for ..IV we derive the two boundary conditions at x = 0

(12 r
-- = 0cx2

1 303V OU. _
3J11h18x3+2h(P-L)aX -kv - O.

Again we shall assume that interstitial flow is negligible, putting {) = 1. The solution v is
then of the form (4.5) with the two complex conjugate roots A. and .1* of equation (4.4).
Substitution of the solution (4.5) into the boundary conditions (5.2), taking into account
equation (4.4), yields,

(
C k\,... (c k) * _),+'41 + .1* +'4 c - O.

(5.3)

(5.4)

By elimination of the constants C and C* and cancellation of the factor (A. - A.*) in the
resulting equation we obtain

(.12+.1.1*+.1*2)+ ~A.A.*(A.+A.*) = O.

Due to relations (4.12) for the roots A. and .1* we further derive

and equation (5.4) may be written

r-1 = A.J(2-r)

with

A = ~(~)t
4c a

b
r = .J(a C)'

(5.5)

(5.6)

(5.7)

The value ofr as a function of A is obtained by solving equation (5.6). Knowing r, the critical
compressive stress P for edge buckling is derived from the relation

b = P-L = r..j(a c). (5.8)

The roots A. and .1* are derived by substituting this value of b into equation (4.4). It becomes

(5.9)

The roots are

(5.10)
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For A varying from zero to infinity we obtain all intermediate cases between perfect slip
and no slip at the edge. The latter case amounts to pinning the hard layers at the edge.
Between these two cases equation (5.6) shows that

1 < r < 2.

The case A = 0 corresponds to r = 1. We obtain

b = J(ac)

A
2

= ~[-1±iJ(3)][~r·
This coincides with the values (4.13) and (4.16) for perfect slip.

The case A = 00 corresponds to r = 2. Hence

b = 2J(a c)

}.2 = -(~r

(5.11 )

(5.12)

(5.13)

This corresponds to the values (3.7) and (3.8) for internal buckling. In this case the defor
mation is an unattenuated sine function throughout the medium.

As we approach the latter case the amplitude of the buckling decreases less rapidly as
we move away from the edge, and the wavelength approaches the value for internal buckling.
A typical deformation for such case is illustrated in Fig. 4(b).

6. EXTENSION TO VISCOUS AND VISCOELASTIC MATERIALS

Consider a laminated medium constituted of purely viscous layers alternately of
viscosity '11 and '12' Applying the author's principle of viscoelastic correspondence [6]
the foregoing theory is readily extended to this case. It is sufficient to replace the elastic
coefficients /11 and /12 by the operators

A1 = P'11

A2 = P'12'
(6.1 )

In general P is an operator representing the time derivative P = d/dt. In problems of
instability P is an algebraic quantity in the factor exp (pt) representing the exponential
growth with time of the unstable deformation.

Consider for example the case of internal buckling. We replace Land M by

with

M=M'p (6.2)

L,=_l_
(XI (X2
-+
'11 '12

M' = '11(X1 +'72a2'
(6.3)
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Hence the parameters a and c of equations (3.3) are replaced by the operators

. , 16 1
a = ap =-171 tiP

3

By correspondence equation (3.5) becomes

P c'J
~ - L' +a',,2 + 
P - I /

where J is

(6.4)

(6.5)

(6.7)

16 M'
J = -- 1\ = -,'i-,. (6.6)

1+1\),2 3 '72

For a given value ofthe compressive stress P equation (6.5) shows that there is a wavelength
!e = nh/)' for which p is a maximum. This is the wavelength of maximum amplitude rate of
growth or dominant wavelength. This wavelength has the same value as for elastic internal
buckling. If we neglect interstitial flow putting J = I the dominant wavelength is given by
the same expression (3.10) as in the elastic case. The value of p which measures the amplitude
rate of growth is proportional to P and is given by

P
- = L' +2v!(a'c').
p

The general case of edge buckling analyzed in section 5 is also readily extended to viscous
media. We replace k by the operator

k = k'p

where k' is a coefficient of viscous friction at the edge. The value of A is now

(6.8)

(6.9)_ k' (C')*A -~-
4c' a'

and equation (5.6) yields the value of r. The roots Aare derived from equation (5.10). Hence

(6.10)

(6.11 )

From relation (5.8) by correspondence from the elastic case, we derive

P
- = L'+rv!(a'c').
p

Since r < 2, the value of p is larger than the value derived from (6.7) for viscous internal
buckling. Hence the amplitude due to viscous edge buckling tends to grow faster and will
generally overshadow the appearance of internal buckling.

The same general conclusions derived for elastic media are applicable to viscous media.
For instance as the friction at the edge increases, hence for increasing values of k' the
amplitude of the deformation decreases less rapidly as we move away from the edge, up
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to the case of infinite friction where the buckling deformation is represented by a sine
function of constant amplitude.

Identical behavior is also obtained for viscoelastic materials defined by operators
itl = '1J(p) it2 = '12f(P) k = k'f(p) with the same increasing function f(p).

Finally, by formal correspondence, the results may be extended to viscoelastic materials
represented by operators which are completely general. However, the physical behavior
must be the object of a separate analysis for each case.
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AficT)l8KT-TIoKa3aHO, 'ITO B JIaMHHapHoA cpelle, nOJlBePllCeHHOA ClICaTHIO, nORBJIReTCR HecTa6HJIbHOCTb,
KOTopali HMeeT MecTO B6JIH3H OTpe3aHoro Kpall nepneH)lHKyJIlipHO KCJIORM. BhlBO)lHTCIi 06WHe ypaBHeHHII
Mil CJIYlfali peOJIOrHlfecKoro paBHoBecHR JIaMHHapHhlx Cpell, KOTophle npHMeHRIOTcR B lfaCTHOM CJIylfae
"Kpaeroro BhlnYlfHBaHHII". TeopLUI 3aKJIIOlfaeT 311>«IJeKT "npOMellCYTOlfHoro TelfeHHII". TIOCJIellCTBHe
npHHl.\Hna aBTopa, KacalOwerocli 3aBHcHMOCTH, pe3YJIbTaTbl BallCHhI Mil MeTepHaJIOB ynpyrHx, BlI3KHX
H BR3KoynpyrHx. YlfHThlBaeTCIi BJIHIIHHe TpeHHII Ha KpalO. PaclfeT MOllCHO paCCMaTpHBaTb KaK pa3BHTHe
TeopHH nepBOHa'laJIbHO HanpRlICeHHblx eHH30TponHblx Cpell, TaK lfT06h1 BKJIlOlfHTb MOMeHTHhle HanplillCeHHII
3aBHCHMOCTb rpallHeHTa HanplillCeHHII OT nepeMeweHHII.


